The Quran and Mountains: Difference between revisions
[checked revision] | [checked revision] |
Line 132: | Line 132: | ||
Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center> | Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center> | ||
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. | Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. <center>[[File:Seis-states.gif|alt=|center|frame]]</center>Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. The collision of tectonic plates causes mountains to form and this same collision also causes earthquakes, which explains the correlation of the two phenomena.{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR>ASC India|Why do earthquakes happen here? | ||
{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR> | |||
The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}} | The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}} | ||
Indeed, a mountainous region is often indicative of a high-earthquake frequency in the same area. Other examples of mountainous regions that are high-frequency earthquake zones include the Andes<ref>[{{Reference archive|1=http://web.archive.org/web/20050319232505/http://wwwshs1.bham.wednet.edu/curric/science/geophys/jacobson/ANDESMT.HTM|2=2011-10-02}} Andes mts.] - Volcanism and Plate Techtonics</ref> and the African mountains.<ref>[{{Reference archive|1=http://reliefweb.int/sites/reliefweb.int/files/reliefweb_pdf/node-100782.pdf|2=2011-10-02}} <!-- http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=248&ArticleID=3047 -->Earthquake Risk Alert for Africa's Mountain Regions] - United Nations Environment Programme, May 6, 2002</ref> | |||
{{Quote|[{{Reference archive|1=http://asc-india.org/menu/gquakes.htm|2=2011-10-02}} Great Earthquakes]<BR>Amateur Seismic Centre|Strong and damaging earthquakes have been felt in all parts of the Indian Sub-continent. The most seismically active areas are those in the '''Himalayan regions''' of the sub-continent and in the Andaman and Nicobar Islands due to the peculiar tectonic nature of these regions.}} | {{Quote|[{{Reference archive|1=http://asc-india.org/menu/gquakes.htm|2=2011-10-02}} Great Earthquakes]<BR>Amateur Seismic Centre|Strong and damaging earthquakes have been felt in all parts of the Indian Sub-continent. The most seismically active areas are those in the '''Himalayan regions''' of the sub-continent and in the Andaman and Nicobar Islands due to the peculiar tectonic nature of these regions.}} | ||
Many of the the largest earthquakes, including the two largest earthquakes ever recorded, are associated with mountainous regions.<ref>[{{Reference archive|1=http://asc-india.org/lib/world10.htm|2=2011-10-02}} 10 Largest Quakes - Worldwide] - Amateur Seismic Centre</ref> The largest earthquake was the great Chilean earthquake, which occurred 140km south-south-west of Concepción (Biobio), Chile, registered at 9.5Mw – the Andes mountain range, evidently, did not prevent the earthquake or cause the region to be particularly stable. The second largest earthquake was the Prince William Sound earthquake, which occurred 33.2km SE of Mt. Goode (Alaska), U.S.A., registered at 9.2Mw – Mt Goode, nearby, was of no assistance. The sixth largest earthquake was the Ecuador earthquake, which occurred 138km west of Tortuga (Esmeraldas Province), Ecuador, registered at 8.8Mw – the nearby Andes mountain range was likewise of no assistance. The eighth largest earthquake was the Arunachal Pradesh, which occurred 20.7 kilometers NW of Tajobum (Arunachal Pradesh), India, registered at 6Mw – this earthquake took place in the Assam hills and caused landslides in the mountains which, again, did not prevent or stabilize the earthquake. Such examples where formidable mountains and mountain ranges co-exist with earthquakes of immense magnitudes, critics point out, are abundant and thus undermine the idea that mountains stabilize the Earth or play any role in mitigating earthquakes. | |||
Let’s examine the case of the largest earthquake ever recorded; the Chilean earthquake of 1960: | Let’s examine the case of the largest earthquake ever recorded; the Chilean earthquake of 1960: | ||
{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}<center>[[File: | {{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}<center>[[File:Chilean_Earthquake_of_1960.gif|alt=|center|thumb|415.989x415.989px]]</center> | ||
The Andes Mountains did not seem to prevent or stabilize this earthquake. In fact, it is the collision between the Nazca and South American tectonic plates that causes these earthquakes and raises the Andes mountains. | The Andes Mountains did not seem to prevent or stabilize this earthquake. In fact, it is the collision between the Nazca and South American tectonic plates that causes these earthquakes and raises the Andes mountains. | ||
{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}} | {{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}} | ||
<center>[[File:Platetecmap.gif]]</center> | <center>[[File:Platetecmap.gif|alt=|center|thumb|420.978x420.978px]]</center> | ||
Hence the proposition that mountains prevent earthquakes is false. | Hence the proposition that mountains prevent earthquakes is false. |
Revision as of 01:15, 1 March 2021
Error creating thumbnail: Unable to save thumbnail to destination
| This article or section is being renovated. Lead = 2 / 4
Structure = 2 / 4
Content = 4 / 4
Language = 3 / 4
References = 3 / 4
|
The Quran has a particular conception of the nature of mountains, their formation, and the geological role they play that is is referenced in multiple verses and several hadiths. In recent times, many Islamic scholars have argued that this conception is both scientifically sound and and instance of miraculous scientific foreknowledge on the part of the Quran which, they argue, could not have arrived at the conception it holds without divine insight. Individuals key to the popularization of this idea include the apologists I. A. Ibrahim and Zakir Naik, Professor Zaghloul Raghib El Naggar (a geologist specializing in biostratification), and the Saudi-financed surgeon Dr. Maurice Bucaille.
Parties advocating the description of mountains found in the Quran as a scientific miracle identify two key claims made in the scripture: (1) that Mountains can be described as 'pegs' and (2) that mountains play some role in 'stabilizing the Earth' - these two ideas, advocates hold, are evidence of a miraculous scientific insight. Critics problematize the miracle claim by arguing that its advocates: (1) rely on arbitrarily specific definitions of ambiguous words, (2) rely on arbitrarily specific interpretations of ambiguous phrases, (3) rely on readings that are arbitrarily literal or metaphorical, and (4) reference their own authority as the basis of their correctness while failing to provide adequate argumentation. These tactics, critics suggest, are commonly employed in the presentation of any number of scientific miracles claimed on the part of the Qur'an or other Islamic scripture.
Key verses and terms
Key Arabic terms in the discussion surrounding the proposed miracle include awtad, meaning 'pegs/bulwarks/stabilizers/projections'[1], rawasiya, meaning 'mountains', and tameeda, meaning 'tumble/shake/quake/convulse/sway'[2].
The word rawasiya comes from the root arsa, the same root used for the Arabic 'anchor'. To 'throw out' or 'cast' 'the anchor' is alqa al-mirsah. Using these terms, similar to the phrase "cast the anchor to keep the ship from moving", one can say "cast the mountains to keep the earth from shaking."[2] Dr. Zakir Naik translates awtad as 'stakes' or 'pegs' (like those used to anchor a tent).[1]
15:19
Pickthal: And the earth have We spread out, and placed therein firm hills, and caused each seemly thing to grow therein.
Shakir: And the earth -- We have spread it forth and made in it firm mountains and caused to grow in it of every suitable thing.
Transliteration: Waal-arda madadnaha waalqayna feeha rawasiya waanbatna feeha min kulli shay-in mawzoonin16:15
Pickthal: And He hath cast into the earth firm hills that it quake not with you, and streams and roads that ye may find a way.
Shakir: And He has cast great mountains in the earth lest it might be convulsed with you, and rivers and roads that you may go aright,
Transliteration: Waalqa fee al-ardi rawasiya an tameeda bikum waanharan wasubulan laAAallakum tahtadoonaQuran 16:15 uses the word ard which can be used to describe the Earth, its surface, or the ground in general. Critics argue that the ambiguity of this word is critical to the advocates' argument, as it can be and is adapted to variously refer to anything from the Earth, the crust, the lithosphere, the mantle or any combination of the above, as needed.
Critics also argue that it problematic that the Quran uses in these contexts the word tameeda, which advocates of the miracles interpret as meaning 'shaking' or 'disturbance', instead of the word zalzala, which is used elsewhere in the Quran and means ‘earthquake’. The advocates of the miracle, the critics argue, cannot explain why the Quran would only metaphorically allude to earthquakes rather than naming them outright, as the Quran does elsewhere. To the critics, the usage of an altogether different word than 'earthquakes' suggests that the Quran was not alluding to earthquakes and that the advocates of the miracle have made an arbitrarily favorable interpretation in understanding the verse as they do.
21:31 & 20:105
Pickthal: And We have placed in the earth firm hills lest it quake with them, and We have placed therein ravines as roads that haply they may find their way.
Shakir: And We have made great mountains in the earth lest it might be convulsed with them, and We have made in it wide ways that they may follow a right direction.
Transliteration: WajaAAalna fee al-ardi rawasiya an tameeda bihim wajaAAalna feeha fijajan subulan laAAallahum yahtadoonaOther interpretations of Quran 21:31 are as follows:
Daryabadi: And We have placed in the Earth firm mountains lest it should move away with them...
Hilali & Khan: And We have placed in the Earth firm mountains lest it should shake with them...
Al-Muntakhab: And We furnished the Earth with firm stays, mountains placed in a certain setting, fixed as with an anchor, to stabilize it lest it should sway you from side to side or in all directions..Another verse used to evidence the idea that mountains have roots is Quran 20:105. Although the verse makes no reference to the word 'root', a number of translators include this interpretation in their translations. Advocates use such translations, including those of Yusuf Ali and al-Muntakhab, to buttress their argument. Critics argue that such evidence is vacuous, as the word 'root' no where appears in the verse, and the advocates of the miracle are simply referencing those specific translators who both already concur with them and have taken the liberty to insert that interpretation into their respective translations.
Pickthal: They will ask thee of the mountains (on that day). Say: My Lord will break them into scattered dust.
Shakir: And they ask you about the mountains. Say: My Lord will carry them away from the roots.
Transliteration: Wayas-aloonaka AAani aljibali faqul yansifuha rabbee nasfan31:10
Pickthal: He hath created the heavens without supports that ye can see, and hath cast into the earth firm hills, so that it quake not with you; and He hath dispersed therein all kinds of beasts. And We send down water from the sky and We cause (plants) of every goodly kind to grow therein.
Shakir: He created the heavens without pillars as you see them, and put mountains upon the earth lest it might convulse with you, and He spread in it animals of every kind; and We sent down water from the cloud, then caused to grow therein (vegetation) of every noble kind.
Transliteration: Khalaqa alssamawati bighayri AAamadin tarawnaha waalqa fee al-ardi rawasiya an tameeda bikum wabaththa feeha min kulli dabbatin waanzalna mina alssama-i maan faanbatna feeha min kulli zawjin kareemin78:6-7
Pickthal: Have We not made the earth an expanse, And the high hills bulwarks?
Shakir: Have We not made the earth an even expanse? And the mountains as projections (thereon)?
Transliteration: Alam najAAali al-arda mihadan Waaljibala awtadanDiscussions regarding the proposed miracle
Isostasy and mountains as peg-like structures
Schematic from Cailleux's Anatomy of the Earth
The schematic diagram taken from page 220 of Anatomy of the Earth by the French geologist Cailleux is cited by various sources advocating the reality of the proposed miracle.[3] The basic underground protrusion of the crust beneath the mountainous region of the Alps, for instance, appears as a sort of peg embedded in the lower layer of the Earth. This, the advocates suggest, coheres nearly with Quran 78:6-7 which reads, “Have We not made the earth as a wide expanse, And the mountains as pegs?”
The geological phenomenon observed is known as isostasy. This term describes the nature of the Earth's crust such that the height of the crust above the layer of the Earth immediately beneath the crust tends to be proportionate to the depth of the crust into the lower layer in the same area.
Thus, elevation above sea-level tends to correlate positively with the thickness of the Earth's crust at any given place. The reason why the crust tends to exist in this manner is compared to the same physics of floatation whereby the majority of an iceberg suspended in water extends below sea level and, at the same time, it is the case that the taller the portion of ice above sea level, the deeper the iceberg dips down below.
Advocates of the scientific miracle argue that isostasy affirms the peg-like nature of mountains and that Muhammad could not, in the 7th century, have come to realize this without divine aid. Critics respond to this by arguing that the caption associated with the diagram found in Cailleux's book explicitly points out that the visual representation has had its 'vertical scale greatly exaggerated'.[4] As a result, critics argue, the peg-like nature of mountains is not so plainly evident as the exaggerated representation found in the diagram would make it seem.
Accurate representations of isostasy and exceptions
Other visual representations with less exaggerated and more accurate vertical scales, some of which are cited by the advocates themselves, do not depict mountains as so plainly resembling pegs.[3] Advocates respond by suggesting that when viewed in this more accurate representation, the mountains resemble 'blunt pegs'; critics disagree.
Critics hold that the 'roots' of the mountains described by isostasy do not resemble pegs in either form or function. For instance, isostasy, while often observed, is by no means universal and there are several outstanding examples of mountains and other elevated geological structures which have no such roots.
Examples include structures formed by the geological processes of extension and faulting, such as the Nevada Basin and Range, as well as those formed thrust and fold belts, such as the Appalachians, Eastern Bolivian Andes, Zagros Mountains, and the Calcareous Alps. Indeed, even the Himalayas are underlaid by a crust structure shaped like a broad wedge and which does not resemble a peg.[5] The same is true for the Pyrenees.[6]
Another important example is the Andes mountain range, whose 'roots', as observed in a true-scale cross-section of the range, do not resemble a peg and which do not serve any 'peg-like' purpose.
Critical and historical perspectives
Critics conclude that what may at most be said regarding the roots of those mountains that possess them is that they resemble pigs in some minimal metaphorical sense and that it is not the case that all mountains are literal pegs, as described in the Quran, which have been 'cast down' into the earth in order to stabilize this.
If the advocates opt to transition to a metaphorical interpretation here, the critics continue, they have made an arbitrary decision, as the relevant scripture appears to take its own description quite literally (as is generally the case with verses in the Quran describing the step-wise creation of the Earth and heavens).
Historians circumvent the debate and simply hold that since there is no reason to believe that Muhammad was receiving revelation from some deity, or even that such a deity exists, Muhammad likely either inferred the existence of some subsurface structure beneath mountains on the basis of basic visual comparisons between the side of a mountain and the bottom of a tree or adapted the beliefs of predecessors who had made such observations before his time.
Historians point out, for instance, that the ancient Hebrews held similar ideas regarding the 'roots of mountains'. It is not at all inconceivable and to some extent certain that such ideas had been passed down to and adapted by Muhammad.
The function of pegs vs. that of mountains
General arguments
Some advocates of the miracle argue that where mountains result from the collision of tectonic plates, they also cause the stability of the Earth. One advocates of the miracle writes as follows:
Critics, in response, point out the difference between cause and effect, suggesting that the advocates conflate the two, and describe how the formation of mountains is an incidental result of the collision of the tectonic plates, an event which in fact causes rather than prevents earthquakes. The mountains generated at these fault lines are a product of the tectonic collision and cannot be said to in any sense prevent it from taking place.
Other advocates of the miracle, aware that these mountains result from and do not prevent tectonic collision, proceed differently. These advocates argue that the mountains slow the collision down and dampen the impact.
To these advocates, critics respond that there is no scientific evidence which suggests that mountains slow down tectonic collisions in any meaningful way. And, while it is inevitably the case that the crumpling of the crust which forms the mountains throughout the collision somehow 'dampens' the impact, there is no evidence that the resultant mountains stabilize either plate (it is also difficult to interpret what this could possible mean, as the mountains do not exist prior to the collision in any case, and so could not, again, meaningfully 'prevent' it). What stops the collision are simply the opposing forces of either plate.
Moreover, the critics add, considering the above, these mountains are not acting in any capacity that can be described as peg-like (a better analogy might be the bumper of a car, which crumples upon collision to save the driver, for instance, from being crumpled - but this has nothing to do with pegs and does not serve the purpose of 'stabilization').
Arguments presented by Professor El Naggar
Professor El Naggar presents the above arguments in fewer words and with a less detailed explanation.
Critics have responded to El Naggar's argument by equating it with the common argument made by advocates of the miracle which conflates the causality and effects involved in the collision of tectonic plates. The mountains, the critics repeat, are the product of the collision and play no known role in stopping it. The collision of the plates stops, instead, gradually slows down as a result of the opposing forces of the two colliding plates.
Critics also point out that El Naggar provides no reference for the causal connection he presents, and that the unevidenced claim presented here by El Naggar is itself only cited by un-refereed conferences on so-called 'Islamic science'.[8] El Naggar's own body of research contains nothing that would support the claim, which is perhaps unsurprising, as El Naggar's own specialization is in biostratifaction and not in the supposed 'stabilizing role of mountains'.
Interestingly, the respected and much more widely-published geologist Dr. David A. Young reportedly concluded precisely the opposite of what El Naggar suggests, differentiating between the mountains existence as a product of the collision and any supposed role they might be assumed to play in rendering the crust stable. It is perhaps important to note that, by stark contrast, none of El Naggar's scientific publications have been peer-reviewed.
El Nagger also suggests that mountains stabilize the lithospheric plates by sinking into the asthenosphere.
As above, there is no scientific evidence which demonstrates that mountains stabilize the lithospheric plates, and El Naggar provides no references. By contrast, there is scientific evidence that suggests that continental plates are stabilized by craton keels. Craton keels are deep extensions of cratons into the mantle which extend any where from 60-300km below the surface. These keels extend far deeper than mountain roots. The formation of these craton roots, or keels, is, however, unrelated to mountains or their formation.[10]
Critics also point out that cratons are stable regions of the earth's crust that are no longer subject to mountain building processes. These craton roots or keels form through the depletion of basaltic elements into the asthenosphere, leading to less dense material that sinks deeper into the mantle due to the lower buoyancy (i.e. the isostasy of the crust, that is, rather than of the mountains).[11]
The relationship between mountains and earthquakes
Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.[12]
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes.
Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. The collision of tectonic plates causes mountains to form and this same collision also causes earthquakes, which explains the correlation of the two phenomena.
ASC India
Indeed, a mountainous region is often indicative of a high-earthquake frequency in the same area. Other examples of mountainous regions that are high-frequency earthquake zones include the Andes[13] and the African mountains.[14]
Amateur Seismic Centre
Many of the the largest earthquakes, including the two largest earthquakes ever recorded, are associated with mountainous regions.[15] The largest earthquake was the great Chilean earthquake, which occurred 140km south-south-west of Concepción (Biobio), Chile, registered at 9.5Mw – the Andes mountain range, evidently, did not prevent the earthquake or cause the region to be particularly stable. The second largest earthquake was the Prince William Sound earthquake, which occurred 33.2km SE of Mt. Goode (Alaska), U.S.A., registered at 9.2Mw – Mt Goode, nearby, was of no assistance. The sixth largest earthquake was the Ecuador earthquake, which occurred 138km west of Tortuga (Esmeraldas Province), Ecuador, registered at 8.8Mw – the nearby Andes mountain range was likewise of no assistance. The eighth largest earthquake was the Arunachal Pradesh, which occurred 20.7 kilometers NW of Tajobum (Arunachal Pradesh), India, registered at 6Mw – this earthquake took place in the Assam hills and caused landslides in the mountains which, again, did not prevent or stabilize the earthquake. Such examples where formidable mountains and mountain ranges co-exist with earthquakes of immense magnitudes, critics point out, are abundant and thus undermine the idea that mountains stabilize the Earth or play any role in mitigating earthquakes.
Let’s examine the case of the largest earthquake ever recorded; the Chilean earthquake of 1960:
1960 May 22 19:11:14 UTC
Magnitude 9.5
The Largest Earthquake in the World
More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.
U.S. Geological Survey, March 29, 2010
The Andes Mountains did not seem to prevent or stabilize this earthquake. In fact, it is the collision between the Nazca and South American tectonic plates that causes these earthquakes and raises the Andes mountains.
Earth Science From Moorland School
Hence the proposition that mountains prevent earthquakes is false.
Mountains stabilize the earth through isostacy
This is a classical misconception of George Airy’s model of Isostacy and the logical fallacy of “Composition” (i.e. generalization of the specific case to the general). Just because the mountains are themselves stabilized by isostacy does not mean that the mountains stabilize the earth or the crust by isostacy. Every element in the earth’s crust is governed by the same physical laws – in fact the crust ‘floats’ on the upper mantle and is thus self-stabilizing according to its own isostacy, not that of mountains.
David Smith, Director of Professional Development, MadSci Network, Earth Sciences, March 14, 2004
Therefore, isostacy stabilizes mountains. Isostacy also stabilizes the earth's crust. However, mountains do not stabilize the crust through isostacy. The crust stabilises itself through its own isostacy. Therefore, the stability of the crust, through 'crustal' isostacy, has nothing to do with mountains. It is only wishful thinking to extend this 'mountain-specific' isostacy to the crust (which has its own isostacy) because isostacy is an independent 'force or phenomenon' acting on the mountains as it independently does on the crust.
The term ‘tameeda’ does not refer to earthquakes but to shaking or disturbances
When shown evidence that collisional-type mountains are associated with earthquakes some Muslims will then claim that the Qur'anic verses do not refer to earthquakes at all. They will claim that tameeda also means stagger, roll, sway, or tilt, and that there's significant difference between them and the short sharp shock of an earthquake (i.e. tameeda refers to some phenomenon, assumed to be associated with geological timescale, that is presently unknown to and undefined by our present understanding of geological science).
The relevant verses are as follows:
The phrase "tamida bi" from mada, yamidu, is only used in the above three Qur'anic verses which are marked **. Hans Wehr's "Dictionary of Modern Written Arabic" gives the meaning of the verbal phrase "mada bi" as: to shake something violently. "Mada bi" is the very form used in these verses.
It is clear that the term ‘tameeda’ is associated with people (i.e. less it should shake with you). Thus, tameeda cannot possibly refer to shaking in a geological timescale as people do not live in geological timescales. For this reason, tameeda and zalzala are synonyms, just as the English terms ‘seismic activity’ and ‘earth tremors’ are synonyms for earthquakes.
Even some Muslim commentators do not consider tameeda to mean shaking in geological timescale.
Tafsir Ibn Kathir
Admittedly Ibn Kathir was not a geologist, but he certainly knew Classical Arabic and his reading of the relevant verses suggests that tameeda is not associated with a geological timescale.
The word, ‘stabilize’ does not mean ‘prevent earthquakes’
Apologists claim that the stabilization is over a geological timescale because of the term ‘tameeda’ as opposed to ‘zalzala’.
For the same reason as the previous section, the term ‘stabilize’ must mean ‘prevent earthquakes’ as tameeda cannot be associated with geological timescales.
Apologists who make this claim also fail to notice that mountains, whether individually or as a mountain range, do not last very long in geological timescales. Wind, water and ice erode them away, or even tectonic movements can destroy them. Now it is worth pondering what kind of stability the relatively short-lived mountains can provide to the 4.5 billion years old earth, if there is anything miraculous that the Qur'an says about mountains.
Mountains Stabilize the Earth's Rotation About its Axis
The mass of the Earth is 5.97*1024 kilograms. The mass of mountains is of a much lower order. Hence they have an infinitesimally small effect on the earth's moment of inertia. In fact, the earth's rotational speed and axial tilt are affected more by the distance of the moon from earth and the post-glacial rebound since the ice ages.
Mountains Absorb Some Waves During Earthquakes
Studies like this one are sometimes quoted by apologists to prove their point. It is clear however, that earthquakes are not prevented. Only the waves are somewhat affected by the presence of mountains as the above simulation suggests. If there were an earthquake larger than Mw 7.5 or if a human settlement were situated between its epicenter and a mountain range, there would be widespread destruction anyway.
Conclusion
The claim that mountains are pegs is untrue as not all mountains have "peg-like" roots. And even the ones that can be claimed to have these peg-like roots, resemble pegs only with a lot of imagination. The claim that mountains stabilize the crust or the earth is (at best) unproven. There is no scientific evidence for this assertion, therefore the Qur'an cannot be validated by scientific evidence that does not exist.
The mere fact of isostacy is not proof that mountains stabilize the crust or the earth. The mere fact that collision-type mountains are formed at the edges of tectonic plates is not proof that mountains stabilize the plates. The mere fact that mountains have deep roots is not proof that mountains stabilize anything.
Lastly, is the Qur'an really the first scripture to make the assertion that Mountains stabilize the earth? Well, some Christians do not think so,[16] and the Bible predates the Qur'an by at least 400 years.
See Also
References
- ↑ 1.0 1.1 Dr. Zakir Naik - The Quran and Modern Science: Compatible Or Incompatible? - Islamic Research Foundation
- ↑ 2.0 2.1 Dr. William Campbell - The Qur'an and the Bible in the light of history and science - PP. 170 - 182
- ↑ 3.0 3.1 A Brief Illustrated Guide to Understanding Islam/ B) The Quran on Mountains - Islam-Guide.com, accessed October 1, 2011
- ↑ Click here for a more complete view of the page scan.
- ↑ Dèzes, Pierre (1999) - Tectonic and metamorphic Evolution of the Central Himalayan Domain in Southeast Zanskar (Kashmir, India) - Mémoires de Géologie. Doctoral thesis (Universite de Lausanne) 32: 149. ISSN 1015-3578
- ↑ Jaume Vergés, Manel Fernàndez, Albert Martìnez - The Pyrenean orogen: pre-, syn-, and post-collisional evolution - Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 8, paper 4, doi:10.3809/jvirtex.2002.00058
- ↑ 7.0 7.1 Dr. Zaghlool El-Naggar PhD - The Mountains as Stabilizers for the Earth - September 24, 2002
- ↑ Curriculum Vitae of Professor DR. Z H. M. El-Na ggar - Elnaggarzr.com
- ↑ Dr. William Campbell, The Qur'an and the Bible in the Light of History & Science (2nd ed.), Middle East Resources, ISBN 1-881085-03-01, 2002 (archived from the original), https://web.archive.org/web/20140217001308/https://www.answering-islam.org/Campbell/s4c2a.html
- ↑ Jordan, T. H., Nature, 1978, 274, 544–548; Elasser, W. M., in The Application of Modern Physics to Earth and Planetary Interiors (ed. Runcorn, S. K.), Interscience, New York, 1969, pp. 223– 240; Morgan, W. J., J. Geophys. Res., 1968, 73, 1959–1970
- ↑ Sankaran, A.V. - CURRENT SCIENCE - VOL. 81, NO. 9, 10 NOVEMBER 2001 pp. 1158-1160
- ↑ Earthquake zones - U.S. Geological Survey
- ↑ Andes mts. - Volcanism and Plate Techtonics
- ↑ Earthquake Risk Alert for Africa's Mountain Regions - United Nations Environment Programme, May 6, 2002
- ↑ 10 Largest Quakes - Worldwide - Amateur Seismic Centre
- ↑ Pillars of the Earth - Institute for Biblical & Scientific Studies, April 30, 2008