The Qur'an and Mountains
Error creating thumbnail: Unable to save thumbnail to destination
| This article or section is being renovated. Lead = 3 / 4
Structure = 4 / 4
Content = 4 / 4
Language = 4 / 4
References = 3 / 4
|
The Quran has a particular conception of the nature of mountains, their formation, and the geological role they play that is is referenced in multiple verses and several hadiths. In recent times, many Islamic scholars have argued that this conception is both scientifically sound and and instance of miraculous scientific foreknowledge on the part of the Quran which, they argue, could not have arrived at the conception it holds without divine insight. Individuals key to the popularization of this idea include the apologists I. A. Ibrahim and Zakir Naik, Professor Zaghloul Raghib El Naggar (a geologist specializing in biostratification), and the Saudi-financed surgeon Dr. Maurice Bucaille.
Parties advocating the description of mountains found in the Quran as a scientific miracle identify two key claims made in the scripture: (1) that Mountains can be described as 'pegs' and (2) that mountains play some role in 'stabilizing the Earth' - these two ideas, advocates hold, are evidence of a miraculous scientific insight. Critics challenge the advocates' interpretations of the relevant verses as well as their use and presentation of scientific information on the topic. Critics further claim that the Qur'an is scientifically inaccurate in its description of a specific time period in which mountains were supposedly formed and Allah having cast them into the earth.
Formation of mountains in the Quran
Stage in the creation account
The above verses are the Quranic six day creation account. In this description, mountains are created within a four day period (which is usually understood to overlap with the first two day period mentioned in the creation account). Critics note that rather than being confined to a closed period, mountain formation began early in Earth's history due to the process of plate tectonics (with accompanying earthquakes), has continued for billions of years, and continues to do so now and into the future. With each plate collision mountains keep on rising higher little by little. And when the plates start to move away from each other, then these mountains start to erode until after millions of years, they completely disappear. On a geological timescale, mountains are not "firmly set", but rather they rise and fall, and are replaced by other mountain ranges over time. For example, there existed no Mount Everest 250 million years ago. The Himilayan mountain range began to grow when two continental plates collided, which will eventually separate again and Everest will gradually erode and disappear completely.
Moreover, there are other type of mountains too, which are formed when Lava comes out from inside the earth. When this lava cools down, it forms high and big mountains, which are known as volcanic mountains.
It is also worth noting that in Sahih Muslim 39:6707, Muhammad elaborates that mountains were created on the second day (Sunday), which is even more specific. Other hadiths quoted by Ibn Kathir in his exegesis for Quran 22:47 ("a day with your Lord is like a thousand years") reported Ibn 'Abbas as stating that each of the six days in which Allah created the heavens and the earth was a thousand years.[1] On this basis (and the similar verse Quran 70:4 about fifty thousand years), advocates argue that "day" (yawm) should not be taken literally. Critics argue that this is a sythesis not apparent in the creation account itself, and in any case 1000 or 50000 years would not indicate that the author was aware of the sheer scale of geological and cosmological time (billions of years).
Casting mountains into the earth
The Quran states that the mountains on Earth's surface were cast upon it by God. The imagery is clear when one considers the verse discussed further below which describe the mountains as 'pegs'.
The word 'he has cast' is alqa (lam-qaf-ya), which in this form (Arabic verb form IV) is frequently used elsewhere in the Quran to mean throw or cast. It is the same word as is used in Quran 3:44 when lots are cast using pens (it would be easy to imagine that mountains were similarly scattered), and Quran 12:10 when the prophet Yusuf is cast down into the well, and in Quran 20:20 when Moses casts down his staff, which becomes a snake.[2]
Again, mountain formation is described in this verse only as a past event, rather than an ongoing process. Furthermore, according to modern science, mountains are not 'placed'/'cast' over earth's surface, but they are formed when two plates collide with each other (and earthquakes take place), then the crust of one plate goes upwards and forms a mountain, while the crust of the other plate goes downwards.
Some critics also note that in another verse, Quran 41:9 discussed above, Allah placed on the earth mountains "from above it" (min fawqiha من فوقها), though almost all major translations interpret the Arabic simply to mean the mountains are above the earth's surface (both interpretations seem possible based on how the preposition and verb are used in some other verses).
Mountains as pegs
The above verse uses the word awtādan, which means pegs or stakes placed in the ground[3] and also occurs in reference to Pharaoh's stakes for crucifixion in Quran 38:12 and Quran 89:10.
See also Quran 15:19, Quran 16:15, Quran 21:31 and Quran 31:10 (discussed further below in the context of stabilising the earth) which all mention Allah casting rawaasiya (steadfast, immovable, anchors, i.e. mountains)[4] in the earth. Critics would reiterate here that mountains do move over geological time.
Critics also point out that unlike pegs which are objects placed into something else, mountains caused by plate tectonics are of continuous material as the surrounding crust, albeit of a different shape due to geological processes. Moreover, they do not peg anything to something else since the underside of mountains merely protrude deeper than the surrounding crust into the Earth's mantle, which is molten and not a solid object.
Isostasy and mountains as peg-like structures
Schematic from Cailleux's Anatomy of the Earth
The schematic diagram taken from page 220 of Anatomy of the Earth by the French geologist Cailleux is cited by various sources advocating the reality of the proposed miracle.[5] The basic underground protrusion of the crust beneath the mountainous region of the Alps, for instance, appears as a sort of peg embedded in the lower layer of the Earth. This, the advocates suggest, coheres nearly with Quran 78:6-7 which reads, “Have We not made the earth as a wide expanse, And the mountains as pegs?”
The geological phenomenon observed is known as isostasy. This term describes the nature of the Earth's crust such that the height of the crust above the layer of the Earth immediately beneath the crust tends to be proportionate to the depth of the crust into the lower layer in the same area.
Thus, elevation above sea-level tends to correlate positively with the thickness of the Earth's crust at any given place. The reason why the crust tends to exist in this manner is compared to the same physics of floatation whereby the majority of an iceberg suspended in water extends below sea level and, at the same time, it is the case that the taller the portion of ice above sea level, the deeper the iceberg dips down below.
Advocates of the scientific miracle argue that isostasy affirms the peg-like nature of mountains and that Muhammad could not, in the 7th century, have come to realize this without divine aid. Critics respond to this by arguing that the caption associated with the diagram found in Cailleux's book explicitly points out that the visual representation has had its 'vertical scale greatly exaggerated'.[6] As a result, critics argue, the peg-like nature of mountains is not so plainly evident as the exaggerated representation found in the diagram would make it seem. Moreover, the so-called pegs do not attach the crust to anything, but merely protrude into the molten mantle of the earth.
Accurate representations of isostasy and exceptions
Other visual representations with less exaggerated and more accurate vertical scales, some of which are cited by the advocates themselves, do not depict mountains as so plainly resembling pegs.[5] Advocates respond by suggesting that when viewed in this more accurate representation, the mountains resemble 'blunt pegs'; critics disagree.
Critics hold that the 'roots' of the mountains described by isostasy do not resemble pegs in either form or function. For instance, isostasy, while often observed, is by no means universal and there are several outstanding examples of mountains and other elevated geological structures which have no such roots.
Examples include structures formed by the geological processes of extension and faulting, such as the Nevada Basin and Range, as well as those formed thrust and fold belts, such as the Appalachians, Eastern Bolivian Andes, Zagros Mountains, and the Calcareous Alps. Indeed, even the Himalayas are underlaid by a crust structure shaped like a broad wedge and which does not resemble a peg.[7] The same is true for the Pyrenees.[8]
Another important example is the Andes mountain range, whose 'roots', as observed in a true-scale cross-section of the range, do not resemble a peg and which do not serve any 'peg-like' purpose.
Critical and historical perspectives
Critics conclude that what may at most be said regarding the roots of those mountains that possess them is that they resemble pegs in some minimal metaphorical sense and that it is not the case that all mountains are literal pegs, as described in the Quran, which have been 'cast down' into the earth in order to stabilize it.
If the advocates opt to transition to a metaphorical interpretation here, the critics continue, they have made an arbitrary decision, as the relevant scripture appears to take its own description quite literally (as is generally the case with verses in the Quran describing the step-wise creation of the Earth and heavens).
Historians circumvent the debate and simply hold that since there is no reason to believe that Muhammad was receiving revelation from some deity, or even that such a deity exists, Muhammad likely either inferred the existence of some subsurface structure beneath mountains on the basis of basic visual comparisons between the side of a mountain and the bottom of a tree or adapted the beliefs of predecessors who had made such observations before his time.
Historians point out, for instance, that the ancient Hebrews held similar ideas regarding the 'roots of mountains'. It is not at all inconceivable and to some extent certain that such ideas had been passed down to and adapted by Muhammad.
Mountains as stabilising the Earth
A number of attempts are commonly made to interpret the following verses in light of modern science.
As mentioned above, the phrases describing the mountains is the word rawaasiya (steadfast, anchors, used to mean mountains).[4]
General arguments
Some advocates of the miracle argue that where mountains result from the collision of tectonic plates, they also cause the stability of the Earth. One advocates of the miracle writes as follows:
Critics, in response, point out the difference between cause and effect, suggesting that the advocates conflate the two, and describe how the formation of mountains is an incidental result of the collision of the tectonic plates, an event which in fact causes rather than prevents earthquakes. The mountains generated at these fault lines are a product of the tectonic collision and cannot be said to in any sense prevent it from taking place.
Other advocates of the miracle, aware that these mountains result from and do not prevent tectonic collision, proceed differently. These advocates argue that the mountains slow the collision down and dampen the impact.
To these advocates, critics respond that there is no scientific evidence which suggests that mountains slow down tectonic collisions in any meaningful way. And, while it is inevitably the case that the crumpling of the crust which forms the mountains throughout the collision somehow 'dampens' the impact, there is no evidence that the resultant mountains stabilize either plate (it is also difficult to interpret what this could possible mean, as the mountains do not exist prior to the collision in any case, and so could not, again, meaningfully 'prevent' it). What stops the collision are simply the opposing forces of either plate.
Moreover, the critics add, considering the above, these mountains are not acting in any capacity that can be described as peg-like (a better analogy might be the bumper of a car, which crumples upon collision to save the driver, for instance, from being crumpled - but this has nothing to do with pegs and does not serve the purpose of 'stabilization').
Arguments presented by Professor El Naggar
Professor El Naggar presents the above arguments in fewer words and with a less detailed explanation.
Critics have responded to El Naggar's argument by equating it with the common argument made by advocates of the miracle which conflates the causality and effects involved in the collision of tectonic plates. The mountains, the critics repeat, are the product of the collision and play no known role in stopping it. The collision of the plates stops, instead, gradually slows down as a result of the opposing forces of the two colliding plates.
Critics also point out that El Naggar provides no reference for the causal connection he presents, and that the unevidenced claim presented here by El Naggar is itself only cited by un-refereed conferences on so-called 'Islamic science'.[10] El Naggar's own body of research contains nothing that would support the claim, which is perhaps unsurprising, as El Naggar's own specialization is in biostratifaction and not in the supposed 'stabilizing role of mountains'.
Interestingly, the respected and much more widely-published geologist Dr. David A. Young reportedly concluded precisely the opposite of what El Naggar suggests, differentiating between the mountains existence as a product of the collision and any supposed role they might be assumed to play in rendering the crust stable. It is perhaps important to note that, by stark contrast, none of El Naggar's scientific publications have been peer-reviewed.
El Nagger also suggests that mountains stabilize the lithospheric plates by sinking into the asthenosphere.
As above, there is no scientific evidence which demonstrates that mountains stabilize the lithospheric plates, and El Naggar provides no references. By contrast, there is scientific evidence that suggests that continental plates are stabilized by craton keels. Craton keels are deep extensions of cratons into the mantle which extend any where from 60-300km below the surface. These keels extend far deeper than mountain roots. The formation of these craton roots, or keels, is, however, unrelated to mountains or their formation.[12]
Critics also point out that cratons are stable regions of the earth's crust that are no longer subject to mountain building processes. These craton roots or keels form through the depletion of basaltic elements into the asthenosphere, leading to less dense material that sinks deeper into the mantle due to the lower buoyancy (i.e. the isostasy of the crust, that is, rather than of the mountains).[13]
The relationship between mountains and earthquakes
Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.[14]
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes.
Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. The collision of tectonic plates causes mountains to form and this same collision also causes earthquakes, which explains the correlation of the two phenomena.
ASC India
Indeed, a mountainous region is often indicative of a high-earthquake frequency in the same area. Other examples of mountainous regions that are high-frequency earthquake zones include the Andes[15] and the African mountains.[16]
Amateur Seismic Centre
Many of the the largest earthquakes, including the two largest earthquakes ever recorded, are associated with mountainous regions.[17] The largest earthquake was the great Chilean earthquake, which occurred 140km south-south-west of Concepción (Biobio), Chile, registered at 9.5Mw – the Andes mountain range, evidently, did not prevent the earthquake or cause the region to be particularly stable.
The second largest earthquake was the Prince William Sound earthquake, which occurred 33.2km SE of Mt. Goode (Alaska), U.S.A., registered at 9.2Mw – Mt Goode, nearby, was of no assistance. The sixth largest earthquake was the Ecuador earthquake, which occurred 138km west of Tortuga (Esmeraldas Province), Ecuador, registered at 8.8Mw – the nearby Andes mountain range was likewise of no assistance. The eighth largest earthquake was the Arunachal Pradesh, which occurred 20.7 kilometers NW of Tajobum (Arunachal Pradesh), India, registered at 6Mw – this earthquake took place in the Assam hills and caused landslides in the mountains which, again, did not prevent or stabilize the earthquake. Such examples where formidable mountains and mountain ranges co-exist with earthquakes of immense magnitudes, critics point out, are abundant and thus undermine the idea that mountains stabilize the Earth or play any role in mitigating earthquakes.
Critics point out the largest earthquake ever recorded - the Chilean earthquake in 1960 - in particular. The U.S. Geological Survey had the following to say regarding this earthquake:
1960 May 22 19:11:14 UTC
Magnitude 9.5
The Largest Earthquake in the World
More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.
U.S. Geological Survey, March 29, 2010
The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.
Earth Science From Moorland School
Mountains and isostatic stabilization
Advocates of the miracle point to George Airy's model of isostasy, which supports the idea that isostasy occurring below mountains causes mountains themselves to be more stable than if isostasy were not occurring below. This, they argue, is another point of evidence that mountains stabilize the Earth as described in the Quran. Critics respond to this argument by stating that George Airy's model says nothing special of mountains, per se, and simply demonstrates that isostasy - that is the extension of the earth's crust below the surface to a degree correlated to the height of the surface at any given point - generally causes the crust of the earth to be stable, whether or not a a given area is mountainous. Moreover, they point out, the fact that a mountain's isostasy causes the mountain to stabilize 'itself' - that is, just as the isostasy of any region causes that same region to be stable - does not mean that the mountain is in any way stabilizing the Earth in general or even the surrounding region in any meaningful way. They summarize this counterargument by suggesting that, on the basis of Airy's model, it can be said that if there were a region possessing a mountain and subject to isostasy, there is no reason to believe that region would be more stable than another, similar region that did not have a mountain but was also subject to isostasy to the same, natural extent.
David Smith, Director of Professional Development, MadSci Network, Earth Sciences, March 14, 2004
Another way the critics put it is that the phenomenon of isostasy is itself responsible for the stability of the crust - whether or not the crust is host to mountains in any given region. Isostasy stabilizes mountains, even terrain, and even indented regions on the Earth's surface. The Mountains do not cause this isostasy any more than isostasy causes mountains, as isostasy is co-occurrent with any variety of terrain - mountainous or otherwise. The co-occurrent isostasy is, however, responsible for the stability of the mountains as well as the crust, and not the other way around - that is, a region excepted from the norms of isostasy (as many are) will not be as stable, whether this region is mountainous or not. Isostasy is best understood as a phenomenon separate from the mountains altogether, as it is no more bound in the simple fact of its existence to the presence of mountains than it is to region of simple, flat crust (even if the specific form it takes in either of these cases is).
Earthquakes and the meaning of tameeda and zalzala
In response to the regular co-occurrence of earthquakes and mountains due to their related presence at tectonic fault-lines, advocates of the miracle sometimes argue that the word (tameeda) used in the Quran to describe the phenomenon which mountains, as pegs, prevent describes something altogether different from earthquakes. What this phenomenon is, they suggest, is not known, as it has not been observed, which may be due to the fact that it does not take place on a human timescale but rather, perhaps, a geological timescale (that is, over hundreds of thousands or millions of years). The argument is based upon the alternative meanings that the word tameeda can have, including 'stagger', 'roll', 'sway', and 'tilt', along with the idea that any geological phenomenon described by these alternative meanings of the word tameeda would be distinct from the short, sharp shock of an earthquake. This, the advocates hold, is important because the Quran deliberately opts not to use the word zalzala in these contexts, which is used elsewhere in the Quran to describe earthquakes.
The phrase tameeda bi- (from mada, yamidu) is only used in Quran 31:10, Quran 21:31, and Quran 16:15.
Lane's lexicon defines this usage as 'Lest it (the earth) should be convulsed with you, and go round with you, and move you about violently. (El-Basáïr, TA.)'.[18] The other usages given by Lane which involves the bi- prefix are for mada bihil bahr (مَادَ بِهِ البَحْرُ), which means 'The sea affected him with a heaving of the stomach, &c. (L.)' and madat bihil ard (مَادَتْ بِهِ الأَرْضُ), which means 'The ground went round with him. (A.)'.[19]
Critics point out that all usages of the word tameeda that subsequently involve the bi- prefix (which means 'with') denote an effect upon humans. While other, not-human-related usages of words deriving from the root mada exist, the word tameeda followed by the prefix bi- always involves human beings. This, alongside the fact that two of the three verses using the phrase affix the bi- prefix with the -kum pronoun (which means 'you all'), makes it clear that whatever the Quran is describing here is somehow immediately relevant to humans and that humans are subject to it. Critics thus conclude that it makes no sense to assume that the Quran is here alluding to some phenomenon unknown to humans, as this interpretation is permitted neither by rational discussion, which requires the possibility of falsification, nor the constraints of the Arabic language. A useful analogy for the comparison between the words tameeda and zalzala, critics suggest, is the difference between the English phrases 'seismic activity' and 'earth tremors'.
Some critics add that, perhaps even more importantly, that where the Quran uses the word zalzala to describe a geological phenomenon, it does so only in the context of the divine acts of destruction that will precede the Day of Judgement. This is different from the verses using the word tameeda, which describe what would presently be taking place on Earth is God had not set the mountains down as stakes (that is, supposedly, common earthquakes).
In addition to the arguments presented by the critics themselves, critics point out that key authorities in the Islamic interpretive tradition have explicitly identified the word tameeda and the verses it is used in as describing earthquakes of the sort that are experienced by human beings. One such key classical authority, a specialist in the interpretation of the Quran, was Ibn Kathir.
Tafsir Ibn Kathir
A final point critics have made in this vein is that if it is the case that the phenomenon described as tameeda occurs on geological timescales imperceptible to humans, then it is difficult to see how mountains, which repeatedly form and disappear on geological timescales, could be responsible for the sustained stabilization of the planet's surface (the Earth having existed for some 4.5 billion years). Moreover, they close, if some such phenomenon was taking place on a geological timescale unbeknownst to humans, why would the Quran mention this? Surely, God would not intentionally speak of things that are incomprehensible to humans, as that would be absurd. At the very least, if the phenomenon described exists but is unknowable, and the Quran is not here making a simple scientific error in its assertions, then what these verses contain cannot be verified as a scientific miracle, for humans, in this case, have no way of verifying what the verses speak of.
Mountains and stabilization of the Earth about its axis
Some advocates of the miracles argue that while mountains do not directly stabilize the Earth's surface by functioning as pegs, their presence and the concomitant fact of the crust being thicker at certain locations due to isostasy results in an increased moment of inertia for the earth, thus reducing its rotational speed and axial tilt. Critics respond to this argument by pointing out that the relative impact of the denser crust at the locations of some mountains is infinitesimally small simply because the crust, even where it is thicker, weighs astronomically less than the Earth as a whole, which weighs 5.97*1024 kgs, such that it has no significant impact on the Earth's rotational speed or axial tilt. While scientists have acknowledged the extremely minimal impact of the mountainous crust in these respects, they have also pointed out that the Earth's rotational speed and axial tilt are more impacted by small factors such as the Earth's distance from the moon and even by the ancient effect of the post-glacial rebound since the ice ages than they are by the mountains.
Critics also argue here that it is nearly impossible to correlate this stabilization effect, how minimally real it may be, with any remotely plausible interpretation of the relevant verses.
Mountains and the absorption of seismic earthquake waves
The above and similar studies are referenced by advocates as specific evidence of mountains stabilizing the Earth's crust and undermining seismic activity. Critics respond that although the phenomenon described has a limited stabilizing effect on certain regions favorably positioned vis-à-vis the mountain range, the mountains do not prevent the earthquake outright and, more importantly, that the limited stabilizing effect observed is only relevant if the inhabited area happens to be favorably positioned vis-à-vis the mountain range - this means that if, for instance, the city were located between the mountain and the fault line where the quake originated, even if the city was located near the foot of the mountain, then the destruction experienced by the city would not be reduced in any significant way. Critics have also stated that the dampening effect described above although real in some cases, is, yet again, not a phenomenon that can be described in any plausible way as being peg-like.
See Also
References
- ↑ Ibn Kathir writes under the commentary of this verse 22:47:
قال ابن أبي حاتم حدثنا الحسن بن عرفة، حدثني عبدة بن سليمان عن محمد بن عمرو عن أبي سلمة عن أبي هريرة أن رسول الله صلى الله عليه وسلم قال " يدخل فقراء المسلمين الجنة قبل الأغنياء بنصف يوم خمسمائة عام " ورواه الترمذي والنسائي من حديث الثوري عن محمد بن عمرو به، وقال الترمذي حسن صحيح. وقد رواه ابن جرير عن أبي هريرة موقوفاً، فقال حدثني يعقوب، حدثنا ابن علية، حدثنا سعيد الجريري عن أبي نضرة عن سمير بن نهار قال قال أبو هريرة يدخل فقراء المسلمين الجنة قبل الأغنياء بمقدار نصف يوم، قلت وما مقدار نصف يوم؟ قال أو ما تقرأ القرآن؟ قلت بلى، قال { وَإِنَّ يَوْماً عِندَ رَبِّكَ كَأَلْفِ سَنَةٍ مِّمَّا تَعُدُّونَ }. وقال أبو داود في آخر كتاب الملاحم من سننه حدثنا عمرو بن عثمان، حدثنا أبو المغيرة، حدثنا صفوان عن شريح بن عبيد عن سعد بن أبي وقاص عن النبي صلى الله عليه وسلم أنه قال " إني لأرجو أن لا تعجز أمتي عند ربها أن يؤخرهم نصف يوم " قيل لسعد وما نصف يوم؟ قال خمسمائة سنة. وقال ابن أبي حاتم حدثنا أحمد بن سنان، حدثنا عبد الرحمن بن مهدي عن إسرائيل عن سماك، عن عكرمة عن ابن عباس { وَإِنَّ يَوْماً عِندَ رَبِّكَ كَأَلْفِ سَنَةٍ مِّمَّا تَعُدُّونَ } قال من الأيام التي خلق الله فيها السموات والأرض. ورواه ابن جرير عن ابن بشار عن ابن المهدي، وبه قال مجاهد وعكرمة، ونص عليه أحمد بن حنبل في كتاب الرد على الجهمية، وقال مجاهد هذه الآية كقوله{ يُدَبِّرُ ٱلاَْمْرَ مِنَ ٱلسَّمَآءِ إِلَى ٱلاَْرْضِ ثُمَّ يَعْرُجُ إِلَيْهِ فِى يَوْمٍ كَانَ مِقْدَارُهُ أَلْفَ سَنَةٍ مِّمَّا تَعُدُّونَ } السجدة 5.
Rasool Allah told that the poor people will enter in the paradise half a day before the rich people, means 500 years before the rich people (while whole day is equal to 1000 years of people's reckoning). al-Tirmidhi and al-Nisai etc recorded it and al-Tirmidhi said that this tradition is 'Hasan Sahih' (i.e. authentic according to al-Tirmidhi). In another tradition, it was asked from Abu Hurayrah, how long is this half day? He replied: "Didn't you read Quran?" I said: "Yes." Upon that he recited me verse 22:47 ... Companion S'ad was asked: "How long is this half day." He replied: "500 years". Ibn Abbas recited this verse and said that this is the length of those 6 days, in which Allah created the heavens and the earth (Ibn Jarir). While Imam Ahmed bin Hanbal described it in more clear words in his book "Refutation of al-Jahmia". Mujjahid said that this verse is similar to verse 5 of Surah al-Sajdah [(Quran 32:5) He rules (all) affairs from the heavens to the earth: in the end will (all affairs) go up to Him, on a Day, the space whereof will be (as) a thousand years of your reckoning.]
- ↑ Lane's Lexicon, Suppliment p. 3012 أَلْقَىٰ
- ↑ awtādan Lane's Lexicon p. 2917
- ↑ 4.0 4.1 rawaasiya Lane's Lexicon p. 1987
- ↑ 5.0 5.1 A Brief Illustrated Guide to Understanding Islam/ B) The Quran on Mountains - Islam-Guide.com, accessed October 1, 2011
- ↑ Click here for a more complete view of the page scan.
- ↑ Dèzes, Pierre (1999) - Tectonic and metamorphic Evolution of the Central Himalayan Domain in Southeast Zanskar (Kashmir, India) - Mémoires de Géologie. Doctoral thesis (Universite de Lausanne) 32: 149. ISSN 1015-3578
- ↑ Jaume Vergés, Manel Fernàndez, Albert Martìnez - The Pyrenean orogen: pre-, syn-, and post-collisional evolution - Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 8, paper 4, doi:10.3809/jvirtex.2002.00058
- ↑ 9.0 9.1 Dr. Zaghlool El-Naggar PhD - The Mountains as Stabilizers for the Earth - September 24, 2002
- ↑ Curriculum Vitae of Professor DR. Z H. M. El-Na ggar - Elnaggarzr.com
- ↑ Dr. William Campbell, The Qur'an and the Bible in the Light of History & Science (2nd ed.), Middle East Resources, ISBN 1-881085-03-01, 2002 (archived from the original), https://web.archive.org/web/20140217001308/https://www.answering-islam.org/Campbell/s4c2a.html
- ↑ Jordan, T. H., Nature, 1978, 274, 544–548; Elasser, W. M., in The Application of Modern Physics to Earth and Planetary Interiors (ed. Runcorn, S. K.), Interscience, New York, 1969, pp. 223– 240; Morgan, W. J., J. Geophys. Res., 1968, 73, 1959–1970
- ↑ Sankaran, A.V. - CURRENT SCIENCE - VOL. 81, NO. 9, 10 NOVEMBER 2001 pp. 1158-1160
- ↑ Earthquake zones - U.S. Geological Survey
- ↑ Andes mts. - Volcanism and Plate Techtonics
- ↑ Earthquake Risk Alert for Africa's Mountain Regions - United Nations Environment Programme, May 6, 2002
- ↑ 10 Largest Quakes - Worldwide - Amateur Seismic Centre
- ↑ أَنْ تَمِيدَ بِكُمْ Lane's Lexicon
- ↑ مَادَ بِهِ البَحْرُ & مَادَتْ بِهِ الأَرْضُ Lane's Lexicon