The Quran and Mountains: Difference between revisions

no edit summary
[checked revision][checked revision]
No edit summary
No edit summary
Line 183: Line 183:
[[File:MarshakEarthquakes.png|alt=|thumb|425x425px|center|Fig. 8.18 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 236]]
[[File:MarshakEarthquakes.png|alt=|thumb|425x425px|center|Fig. 8.18 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 236]]


A more common apologetic interpretation is to claim that the Quran speaks of mountains preventing earthquakes. However, critics point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center>
A more common apologetic interpretation is to claim that the Quran speaks of mountains preventing earthquakes. However, it is now known that the topography (layout of the land surface) can in some circumstances lead to amplification of seismic waves and greater destruction during earthquakes while dampening the waves elsewhere. In particular, topography amplifies ground shaking at mountain tops and ridges (especially the slopes facing away from the source), while it de-amplifies it in valleys.<ref>Khan, S., van der Meijde, M., van der Werff, H., and Shafique, M. (2020) [https://nhess.copernicus.org/articles/20/399/2020/ The impact of topography on seismic amplification during the 2005 Kashmir earthquake], Nat. Hazards Earth Syst. Sci., 20, 399–411, https://doi.org/10.5194/nhess-20-399-2020 ([https://web.archive.org/web/20230225031711/https://nhess.copernicus.org/articles/20/399/2020/ archive])</ref> Around the world, human settlements are commonly built not only in valleys but also on mountain and hill-sides.
 
Critics also point out that scientists noted as early as the 1920s that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center>


Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. If there were no mountains, there would also be no tectonic activity, since the two are inextricably linked, and with no tectonic activity there would be no earthquakes.  
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. If there were no mountains, there would also be no tectonic activity, since the two are inextricably linked, and with no tectonic activity there would be no earthquakes.  
Line 196: Line 198:


{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}[[File:Platetecmap.gif|alt=|center]]
{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}[[File:Platetecmap.gif|alt=|center]]


===Mountains and isostatic stabilization===
===Mountains and isostatic stabilization===
Editors, em-bypass-2, Reviewers, rollback, Administrators
2,743

edits