2,743
edits
[checked revision] | [checked revision] |
Lightyears (talk | contribs) No edit summary |
Lightyears (talk | contribs) No edit summary |
||
Line 153: | Line 153: | ||
While it is common today to interpret the above verses as a reference to earthquakes, it is far more likely that they refer to the earth as a whole. Since the author of these verses would have known that earthquakes do in fact occur, including in Arabia itself, it is unlikely that he would have described mountains as being created lest people suffer earthquakes. The most natural reading is that "the earth" (al-ard) in these verses refer to the entire Earth, which fits with the verse discussed above in which mountains are described as pegs or stakes. The poem quoted above attributed to the pre-Islamic poet al-Muhalhil links the mountains (rawāsiya, like in these verses of the Quran) to the shifting/convulsing (with the same verb as these verses) of the entire earth. Similarly, the myth of [[The Islamic Whale]] on which the Earth rests according to some hadiths was narrated in terms of mountains holding down the earth to stop it moving on the back of the whale. | While it is common today to interpret the above verses as a reference to earthquakes, it is far more likely that they refer to the earth as a whole. Since the author of these verses would have known that earthquakes do in fact occur, including in Arabia itself, it is unlikely that he would have described mountains as being created lest people suffer earthquakes. The most natural reading is that "the earth" (al-ard) in these verses refer to the entire Earth, which fits with the verse discussed above in which mountains are described as pegs or stakes. The poem quoted above attributed to the pre-Islamic poet al-Muhalhil links the mountains (rawāsiya, like in these verses of the Quran) to the shifting/convulsing (with the same verb as these verses) of the entire earth. Similarly, the myth of [[The Islamic Whale]] on which the Earth rests according to some hadiths was narrated in terms of mountains holding down the earth to stop it moving on the back of the whale. | ||
Verses which do seem to describe earthquakes use the words zalzalah ({{Quran|22|1}}), or rajfatu ({{Quran|7|78}}, {{Quran|73|14}}). In contrast, the verses which state that Allah cast or placed the mountains to prevent the earth from shaking use the word tamīda, discussed in the next section below. | Verses which do seem to describe earthquakes use the words zalzalah ({{Quran|22|1}} and {{Quran|99|1}}), or rajfatu ({{Quran|7|78}}, {{Quran|73|14}}). In contrast, the verses which state that Allah cast or placed the mountains to prevent the earth from shaking use the word tamīda, discussed in the next sub-section below. | ||
Further evidence that the tamīda verses refer to the earth as a whole moving is found in a hadith collected by al-Tirmidhi. Its authenticity is graded hasan (good) by Dar-us-Salam, though regardless, this hadith provides linguistic evidence on the meaning of tamīda in relation to the earth as a whole. | Further evidence that the tamīda verses refer to the earth as a whole moving is found in a hadith collected by al-Tirmidhi. Its authenticity is graded hasan (good) by Dar-us-Salam, though regardless, this hadith provides linguistic evidence on the meaning of tamīda in relation to the earth as a whole. | ||
Line 160: | Line 160: | ||
The Prophet said: “When Allah created the earth, it started shaking [tamīdu]. So He created the mountains, and said to them: ‘Upon it’ so it began to settle. [...]}} | The Prophet said: “When Allah created the earth, it started shaking [tamīdu]. So He created the mountains, and said to them: ‘Upon it’ so it began to settle. [...]}} | ||
===The meaning of tamīda (move, convulse, incline to one side)=== | ====The meaning of tamīda (move, convulse, incline to one side)==== | ||
The word translated shift in the above quoted verses is tamīda (from the root ميد). According to Lane's Lexicon, the meanings of this word include to be in a state of motion, convulsion, turn, twist, contort, to incline to one side. Lane even mentions regarding this word a tradition which held that the earth was inclined on its side before mountains were formed.<ref name="tamida">تَمِيدَ tamīda [http://www.studyquran.org/LaneLexicon/Volume7/00000274.pdf Lane's Lexicon] page 2746</ref> | The word translated shift in the above quoted verses is tamīda (from the root ميد). According to Lane's Lexicon, the meanings of this word include to be in a state of motion, convulsion, turn, twist, contort, to incline to one side. Lane even mentions regarding this word a tradition which held that the earth was inclined on its side before mountains were formed.<ref name="tamida">تَمِيدَ tamīda [http://www.studyquran.org/LaneLexicon/Volume7/00000274.pdf Lane's Lexicon] page 2746</ref> | ||
Line 171: | Line 171: | ||
The usage of this word further supports the interpretation that these verses refer to mountains anchoring the earth as a whole from moving in such a manner. | The usage of this word further supports the interpretation that these verses refer to mountains anchoring the earth as a whole from moving in such a manner. | ||
It is clear that the author of the Quran sought to describe some purposeful benefit for which he supposed mountains had been created. This desire is fulfilled by such | It is clear that the author of the Quran sought to describe some purposeful benefit for which he supposed mountains had been created. This desire is fulfilled by such a (mistaken) conception of mountains. Other interpretations which seek to interpret mountains as protecting humans from the effects of plate tectonics or earthquakes falter when one considers that an all-powerful creator of the heavens and earth would have been capable of actually ending all dangerous geological activity before humans arrived on the scene. Instead, some mountain ranges are in regions that are still geologically active, while other mountain ranges are in parts of the world which ceased being geologically active hundreds of millions of years before humans arrived (for example the highlands of Scotland). | ||
=== | ===The relationship between mountains and earthquakes=== | ||
[[File:MarshakEarthquakes.png|alt=|thumb|425x425px|center|Fig. 8.18 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 236]] | |||
The most common apologetic interpretation is to claim that the Quran speaks of mountains preventing or reducing the severity of earthquakes. However, two major problems with such an interpretation are raised by critics, as set out in the subsections below: 1) Seismic amplification can sometimes mean that mountains actually increase the destruction caused by earthquakes; and 2) Destructive and deadly earthquakes do in fact occur (i.e. they are not prevented by mountains), and are correlated strongly with the location of mountain ranges due to the very nature of the underlying processes. | |||
====Mountains and the dampening (or amplification) of seismic waves==== | |||
{{Quote|{{cite web|url=http://bssa.geoscienceworld.org/content/97/6/2066.abstract |title=Effects of Large-Scale Surface Topography on Ground Motions, as Demonstrated by a Study of the San Gabriel Mountains, Los Angeles, California |publisher= |author= |date= |archiveurl= |deadurl=no}}|We investigate the effects of large-scale surface topography on ground motions generated by nearby faulting. We show a specific example studying the effect of the San Gabriel Mountains, which are bounded by the Mojave segment of the San Andreas fault on the north and by the Los Angeles Basin on the south. By simulating a Mw 7.5 earthquake on the Mojave segment of the San Andreas fault, we show that the San Gabriel Mountains act as a natural seismic insulator for metropolitan Los Angeles. The topography of the mountains scatters the surface waves generated by the rupture on the San Andreas fault, leading to less-efficient excitation of basin-edge generated waves and natural resonances within the Los Angeles Basin. The effect of the mountains reduces the peak amplitude of ground velocity for some regions in the basin by as much as 50% in the frequency band up to 0.5 Hz. These results suggest that, depending on the relative location of faulting and the nearby large-scale topography, the topography can shield some areas from ground shaking.}} | |||
The above and similar studies are referenced by advocates as specific evidence of mountains stabilizing the Earth's crust and undermining seismic activity. Critics respond in two ways: Firstly, although the phenomenon described has a limited stabilizing effect on certain regions favorably positioned vis-à-vis the mountain range, the mountains do not prevent the earthquake outright and, more importantly, the limited dampening effect observed is only relevant if the inhabited area happens to be favorably positioned vis-à-vis the mountain range - this means that if, for instance, the city were located between the mountain and the fault line where the quake originated, even if the city was located near the foot of the mountain, then the destruction experienced by the city would not be reduced in any significant way. | |||
Secondly, and perhaps more importantly, the topography (surface layout) of mountainous landscapes can actually '''amplify''' the seismic waves and thus the groundshaking experienced in some locations while dampening the waves elsewhere. This again depends on a number of factors such as the depth of the fault and the precise topography, but there are real studies showing this effect, both with measured seismic data and with computer modelling. | |||
In particular, topography amplifies ground shaking at mountain tops and ridges (especially the slopes facing away from the source), while it de-amplifies it in valleys.<ref>Khan, S., van der Meijde, M., van der Werff, H., and Shafique, M. (2020) [https://nhess.copernicus.org/articles/20/399/2020/ The impact of topography on seismic amplification during the 2005 Kashmir earthquake], Nat. Hazards Earth Syst. Sci., 20, 399–411, https://doi.org/10.5194/nhess-20-399-2020 ([https://web.archive.org/web/20230225031711/https://nhess.copernicus.org/articles/20/399/2020/ archive])</ref> Around the world, human settlements are commonly built not only in valleys but also on mountain and hill-sides. | |||
Seismic amplification can also occur in low-lying areas where cities are more commonly found, especially for deeper earthquakes. The image below from a study of the effect of the mountainous topography around the Taipei basin illustrates that in some circumstances an earthquake would be more destructive to the city of Taipei due to the Central Mountain Range on the Island of Taiwan than if it was surrounded by a smooth topography (click or tap the image to expand the thumbnail). | |||
[[File:TaipeiWavePropogation.png|alt=|thumb|425x425px|center|3D seismic wave speed models of a deep earthquake in northern Taiwan by Shiann et. al., ''Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan'', (2009)<ref>Fig. 2 from Lee, Shiann-Jong & Komatitsch, Dimitri & Huang, Bor-Shouh & Tromp, Jeroen. (2009). [https://www.researchgate.net/publication/30771047_Effects_of_Topography_on_Seismic-Wave_Propagation_An_Example_from_Northern_Taiwan Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan]. Bulletin of the Seismological Society of America. 99. 10.1785/0120080020.</ref><BR />The models take into account the basin but not the mountainous topography (top) or take both into account (middle). The most significant net difference between the two (bottom) is that much of the Taipei basin experiences strongly amplified peak ground velocity (how fast any point on the ground shakes) from the earthquake when the topography of the Central Mountain Range is taken into account.]] | |||
Critics also point out that scientists | ====Correlation between the location of earthquakes and mountains==== | ||
Critics also point out that scientists learned as early as the 1920s that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center> | |||
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. If there were no mountains, there would also be no tectonic activity, since the two are inextricably linked, and with no tectonic activity there would be no earthquakes. | Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. If there were no mountains, there would also be no tectonic activity, since the two are inextricably linked, and with no tectonic activity there would be no earthquakes. | ||
Line 198: | Line 205: | ||
{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}[[File:Platetecmap.gif|alt=|center]] | {{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}[[File:Platetecmap.gif|alt=|center]] | ||
===Tectonic plate interpretations=== | |||
Some advocates of the miracle claim argue that where mountains result from the collision of tectonic plates, they also cause the stability of the Earth. Maurice Bucaille in his book ''The Bible, the Quran and Science'' wrote as follows:{{Quote|Maurice Bucaille,''The Bible, the Quran and Science''|Modern geologists describe the folds in the Earth as giving foundations to the mountains, and their dimensions go roughly one mile to roughly 10 miles. The stability of the Earth's crust results from the phenomenon of these folds.}}Critics, in response, point out the difference between cause and effect, suggesting that the advocates conflate the two. The formation of mountains is an incidental result of the collision or rifting (separation) of the tectonic plates, events which in fact cause rather than prevent earthquakes. The formation of mountains and occurance of earthquakes are thus both largely the result of destabilizing tectonic activity. They are part of the same ongoing process and one cannot exist without the other. Like earthquakes, the mountains generated at these plate boundaries and fault lines are a product of the tectonic movement and cannot be said to in any sense prevent its other effects from taking place. | |||
Other advocates for the Quran, aware that these mountains result from and do not prevent tectonic collision, proceed differently. These advocates argue that the mountains slow the collision of continental plates down and dampen the impact. To these advocates, critics respond that what stops the collisions are simply the opposing forces of either plate. It is impossible that crustal plates collisions could occur without forming mountains since they are part of the same physical process and laws, so a special divine act of creation to create mountains is unnecessary and meaningless. To put it another way, it is nonsensical to say that the earth would shift/convulse with its inhabitants (per the Quran) if the tectonic plate collisions happened without the formation of mountains. One cannot exist without the other. | |||
Moreover, the critics add, considering the above, these mountains are not acting in any capacity that can be described as peg-like (a better analogy might be the bumper of a car, which crumples upon collision to save the driver, for instance, from being crumpled - but this has nothing to do with pegs and does not serve the purpose of 'stabilization'). Nor does such an interpretation take account of the other types of mountain formation discussed above, for example fault block mountains which occur as plates move apart rather than together. | |||
Line 207: | Line 221: | ||
Another way the critics put it is that the phenomenon of isostasy is itself responsible for the stability of the crust - whether or not the crust is host to mountains in any given region. Isostasy stabilizes mountains, even terrain, and even indented regions on the Earth's surface. The Mountains do not cause this isostasy any more than isostasy causes mountains, as isostasy is co-occurrent with any variety of terrain - mountainous or otherwise. The co-occurrent isostasy is, however, responsible for the stability of the mountains as well as the crust, and not the other way around - that is, a region excepted from the norms of isostasy (as many are) will not be as stable, whether this region is mountainous or not. Isostasy is best understood as a phenomenon separate from the mountains altogether, as it is no more bound in the simple fact of its existence to the presence of mountains than it is to region of simple, flat crust (even if the specific form it takes in either of these cases is). | Another way the critics put it is that the phenomenon of isostasy is itself responsible for the stability of the crust - whether or not the crust is host to mountains in any given region. Isostasy stabilizes mountains, even terrain, and even indented regions on the Earth's surface. The Mountains do not cause this isostasy any more than isostasy causes mountains, as isostasy is co-occurrent with any variety of terrain - mountainous or otherwise. The co-occurrent isostasy is, however, responsible for the stability of the mountains as well as the crust, and not the other way around - that is, a region excepted from the norms of isostasy (as many are) will not be as stable, whether this region is mountainous or not. Isostasy is best understood as a phenomenon separate from the mountains altogether, as it is no more bound in the simple fact of its existence to the presence of mountains than it is to region of simple, flat crust (even if the specific form it takes in either of these cases is). | ||
===Mountains and stabilization of the Earth about its axis=== | ===Mountains and stabilization of the Earth about its axis=== | ||
Line 236: | Line 226: | ||
Critics also argue here that it is nearly impossible to correlate this stabilization effect, how minimally real it may be, with any remotely plausible interpretation of the relevant verses. | Critics also argue here that it is nearly impossible to correlate this stabilization effect, how minimally real it may be, with any remotely plausible interpretation of the relevant verses. | ||
==See Also== | ==See Also== |