2,743
edits
[checked revision] | [checked revision] |
Lightyears (talk | contribs) |
Lightyears (talk | contribs) mNo edit summary |
||
Line 124: | Line 124: | ||
[[File:Guilin_yangshuo.png|alt=|thumb|425x425px|center]] | [[File:Guilin_yangshuo.png|alt=|thumb|425x425px|center]] | ||
The diagrams shown below from Stephen Marshak's detailed | The diagrams shown below from Stephen Marshak's detailed university textbook, ''Essentials of Geology'', illustrate major types of mountain formation resulting from tectonic activity: Subduction of oceanic plates underneath continental plates; collision of continental plates; and rifting (separation) of plates which can cause fault block mountains.[[File:MarshakSubduction.png|alt=|thumb|425x425px|left|Illustration of mountain formation due to subduction of an oceanic plate.<BR />Fig. 9.16 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 280]][[File:MarshakFaultBlock.png|alt=|thumb|425x425px|left|Illustration of mountain formation due to rifting.<BR />Fig. 9.18 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 281<BR />It is apparent that fault block mountains, including tilted (or rotational) fault blocks form mountain ranges without generating crustal roots as their formation does not involve an increase in material, and hence no isostatic rebalancing.]][[File:MarshakContinentalCollisions.png|alt=|thumb|425x425px|center|Illustration of mountain formation due to continental plate collision.<BR />Fig. 9.17 in Stephen Marshak, ''Essentials of Geology'' Fourth Edition, 2013, New York: W. W. Norton & Company, p. 281<BR />Note that while this type of mountain formation results in crustal "roots" (thickening), the increased crustal thickness extends all along the length of the mountain range, so does not resemble a peg.]] | ||