The Quran and Mountains: Difference between revisions

Jump to navigation Jump to search
[checked revision][checked revision]
No edit summary
Line 132: Line 132:
Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center>
Critics also point out that, as early as the 1920s, scientists noted that earthquakes are concentrated in very specific and narrow zones arounds the planet (known as Wadati-Benioff zones). In 1954, French seismologist J.P. Rothé published a map showing the concentration of earthquakes along the zones indicated by dots and cross-hatched areas.<ref>[{{Reference archive|1=http://pubs.usgs.gov/gip/dynamic/zones.html|2=2011-10-02}} Earthquake zones] - U.S. Geological Survey</ref><center>[[File:Map_by_J.P._Rothé.gif|alt=|center|thumb|425x425px|J.P. Rothé's 1954 map]]</center>


Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. <center>[[File:Seis-states.gif|alt=|center|frame]]</center>Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. The collision of tectonic plates causes mountains to form and this same collision also causes earthquakes, which explains the correlation of the two phenomena.{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR>ASC India|Why do earthquakes happen here?  
Critics note how the earthquakes originate mainly from the edges of tectonic plates, including collisional mountain ranges and ocean trenches and ridges, which demonstrates that mountains do not stabilize the crust or the earth. The presence of mountains on any part of the Earth's surface thus often suggests the presence of precisely those underground geographical circumstances which generate earthquakes. [[File:Seis-states.gif|alt=|frame]]Critics cite the Himalayan mountain range as a specific example of a mountain range which, rather than preventing earthquakes, is in fact closely associated with them. The collision of tectonic plates causes mountains to form and this same collision also causes earthquakes, which explains the correlation of the two phenomena.{{Quote|[{{Reference archive|1=http://asc-india.org/menu/seismi.htm|2=2011-10-02}} Seismicity of South Asia]<BR>ASC India|Why do earthquakes happen here?  
The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}}  
The Indian subcontinent lies upon the Indian Plate. This plate is moving northward at about 5 centimetres per year and in doing so, collides with the Eurasian Plate. Upon the Eurasian Plate lie the Tibet plateau & central Asia. '''Due to this mammoth collision, the Himalayas are thrust higher and very many earthquakes are generated in the process. This is the cause of earthquakes from the Himalayas to the Arakan Yoma.''' The same process, though involving the Indian Plate and the Burmese Micro-plate results in earthquakes in the Andaman & Nicobar Islands. Sometimes earthquakes of different magnitudes occur within the Indian Plate, in the peninsula and in adjoining parts of the Arabian Sea or the Bay of Bengal. These arise due to localized systems of forces in the crust sometimes associated with ancient geological structures such as in the Rann of Kachchh.}}  


Indeed, a mountainous region is often indicative of a high-earthquake frequency in the same area. Other examples of mountainous regions that are high-frequency earthquake zones include the Andes<ref>[{{Reference archive|1=http://web.archive.org/web/20050319232505/http://wwwshs1.bham.wednet.edu/curric/science/geophys/jacobson/ANDESMT.HTM|2=2011-10-02}} Andes mts.] - Volcanism and Plate Techtonics</ref> and the African mountains.<ref>[{{Reference archive|1=http://reliefweb.int/sites/reliefweb.int/files/reliefweb_pdf/node-100782.pdf|2=2011-10-02}} <!-- http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=248&ArticleID=3047 -->Earthquake Risk Alert for Africa's Mountain Regions] - United Nations Environment Programme, May 6, 2002</ref>  
Indeed, a mountainous region is often indicative of a high-earthquake frequency in the same area. Other examples of mountainous regions that are high-frequency earthquake zones include the Andes<ref>[{{Reference archive|1=http://web.archive.org/web/20050319232505/http://wwwshs1.bham.wednet.edu/curric/science/geophys/jacobson/ANDESMT.HTM|2=2011-10-02}} Andes mts.] - Volcanism and Plate Techtonics</ref> and the African mountains.<ref>[{{Reference archive|1=http://reliefweb.int/sites/reliefweb.int/files/reliefweb_pdf/node-100782.pdf|2=2011-10-02}} <!-- http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=248&ArticleID=3047 -->Earthquake Risk Alert for Africa's Mountain Regions] - United Nations Environment Programme, May 6, 2002</ref>  


{{Quote|[{{Reference archive|1=http://asc-india.org/menu/gquakes.htm|2=2011-10-02}} Great Earthquakes]<BR>Amateur Seismic Centre|Strong and damaging earthquakes have been felt in all parts of the Indian Sub-continent. The most seismically active areas are those in the '''Himalayan regions''' of the sub-continent and in the Andaman and Nicobar Islands due to the peculiar tectonic nature of these regions.}}Many of the the largest earthquakes, including the two largest earthquakes ever recorded, are associated with mountainous regions.<ref>[{{Reference archive|1=http://asc-india.org/lib/world10.htm|2=2011-10-02}} 10 Largest Quakes -  Worldwide] - Amateur Seismic Centre</ref> The largest earthquake was the great Chilean earthquake, which occurred 140km south-south-west of Concepción (Biobio), Chile, registered at 9.5Mw – the Andes mountain range, evidently, did not prevent the earthquake or cause the region to be particularly stable. The second largest earthquake was the Prince William Sound earthquake, which occurred 33.2km SE of Mt. Goode (Alaska), U.S.A., registered at 9.2Mw – Mt Goode, nearby, was of no assistance. The sixth largest earthquake was the Ecuador earthquake, which occurred 138km west of Tortuga (Esmeraldas Province), Ecuador, registered at 8.8Mw – the nearby Andes mountain range was likewise of no assistance. The eighth largest earthquake was the Arunachal Pradesh, which occurred 20.7 kilometers NW of Tajobum (Arunachal Pradesh), India, registered at 6Mw –  this earthquake took place in the Assam hills and caused landslides in the mountains which, again, did not prevent or stabilize the earthquake. Such examples where formidable mountains and mountain ranges co-exist with earthquakes of immense magnitudes, critics point out, are abundant and thus undermine the idea that mountains stabilize the Earth or play any role in mitigating earthquakes.[[File:Chilean_Earthquake_of_1960.gif|alt=|right]]Critics point out the largest earthquake ever recorded - the Chilean earthquake in 1960 - in particular. The U.S. Geological Survey had the following to say regarding this earthquake:
{{Quote|[{{Reference archive|1=http://asc-india.org/menu/gquakes.htm|2=2011-10-02}} Great Earthquakes]<BR>Amateur Seismic Centre|Strong and damaging earthquakes have been felt in all parts of the Indian Sub-continent. The most seismically active areas are those in the '''Himalayan regions''' of the sub-continent and in the Andaman and Nicobar Islands due to the peculiar tectonic nature of these regions.}}Many of the the largest earthquakes, including the two largest earthquakes ever recorded, are associated with mountainous regions.<ref>[{{Reference archive|1=http://asc-india.org/lib/world10.htm|2=2011-10-02}} 10 Largest Quakes -  Worldwide] - Amateur Seismic Centre</ref> The largest earthquake was the great Chilean earthquake, which occurred 140km south-south-west of Concepción (Biobio), Chile, registered at 9.5Mw – the Andes mountain range, evidently, did not prevent the earthquake or cause the region to be particularly stable.[[File:Chilean_Earthquake_of_1960.gif|alt=|thumb]]The second largest earthquake was the Prince William Sound earthquake, which occurred 33.2km SE of Mt. Goode (Alaska), U.S.A., registered at 9.2Mw – Mt Goode, nearby, was of no assistance. The sixth largest earthquake was the Ecuador earthquake, which occurred 138km west of Tortuga (Esmeraldas Province), Ecuador, registered at 8.8Mw – the nearby Andes mountain range was likewise of no assistance. The eighth largest earthquake was the Arunachal Pradesh, which occurred 20.7 kilometers NW of Tajobum (Arunachal Pradesh), India, registered at 6Mw –  this earthquake took place in the Assam hills and caused landslides in the mountains which, again, did not prevent or stabilize the earthquake. Such examples where formidable mountains and mountain ranges co-exist with earthquakes of immense magnitudes, critics point out, are abundant and thus undermine the idea that mountains stabilize the Earth or play any role in mitigating earthquakes.


{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place.[[File:Platetecmap.gif|alt=|center]]
Critics point out the largest earthquake ever recorded - the Chilean earthquake in 1960 - in particular. The U.S. Geological Survey had the following to say regarding this earthquake:
 
{{Quote|[{{Reference archive|1=http://earthquake.usgs.gov/earthquakes/world/events/1960_05_22_articles.php|2=2011-10-02}} Historic Earthquakes]<BR>U.S. Geological Survey, March 29, 2010|Chile<BR>1960 May 22 19:11:14 UTC <BR>Magnitude 9.5 <BR>The Largest Earthquake in the World <BR><BR>More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and $550 million damage in southern Chile; tsunami caused 61 deaths, $75 million damage in Hawaii; 138 deaths and $50 million damage in Japan; 32 dead and missing in the Philippines; and $500,000 damage to the west coast of the United States.}}The Andes Mountains did not prevent or stabilize this earthquake. On the contrary, later research revealed that the collision of tectonic plates that caused the earthquake also caused the Andes mountains to be raised. Similar earthquakes in the past are responsible for the existence of Andes in the first place. This collision even serves as a textbook example of the general phenomena, as can be seen below.{{Quote|[{{Reference archive|1=http://www.moorlandschool.co.uk/earth/tectonic.htm|2=2011-10-02}} Plate tectonics]<BR>Earth Science From Moorland School|This is a convergent plate boundary, the plates move towards each other. The amount of crust on the surface of the earth remains relatively constant. Therefore, when plates diverge (separate) and form new crust in one area, the plates must converge (come together) in another area and be destroyed. An example of this is the Nazca plate being subducted under the South American plate to form the Andes Mountain Chain.}}[[File:Platetecmap.gif|alt=|center]]
===Mountains stabilize the earth through isostacy===
===Mountains stabilize the earth through isostacy===


Editors, recentchangescleanup, Reviewers
6,633

edits

Navigation menu